3,324 research outputs found

    The merger of two-dimensional radially stratified high-Froude-number vortices

    Get PDF
    We investigate the influence of density inhomogeneities on the merger of two corotating two-dimensional vortices at infinite Froude number. In this situation, buoyancy effects are negligible, yet density variations still affect the flow by pure inertial effects through the baroclinic torque. We first re-address the effects of a finite Reynolds number on the interaction between two identical Gaussian vortices. Then, by means of direct numerical simulations, we show that vortices transporting light fluid in a heavier counterpart merge from further distances than vortices in a uniform density medium. On the other hand, heavy vortices only merge from small separation distances. We measure the critical distance a/b0 of the vortex radii to their initial separation distance. It departs from the homogeneous threshold of 0.22 in response to increasing density contrasts between the vortices and their surroundings. An analysis of the contribution of the baroclinic vorticity to the dynamics of the flow is detailed and explains the observed behaviour. This analysis is completed by a simple model based on point vortices that mimics the flow. It is concluded that vortices carrying light fluid are more likely to generate large-scale structures than heavy ones in an inhomogeneous fluid

    Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes

    Full text link
    Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of fused silica while being free of Raman scattering. It also has a much higher optical damage threshold and a transparency window that extends from the UV to the infrared. We report the observation of nonlinear phenomena, such as self-phase modulation, in hollow-core photonic crystal fiber filled with supercritical Xe. In the subcritical regime, intermodal four-wave-mixing resulted in the generation of UV light in the HE12 mode. The normal dispersion of the fiber at high pressures means that spectral broadening can clearly obtained without influence from soliton effects or material damage

    Exponential decay for the damped wave equation in unbounded domains

    Full text link
    We study the decay of the semigroup generated by the damped wave equation in an unbounded domain. We first prove under the natural geometric control condition the exponential decay of the semigroup. Then we prove under a weaker condition the logarithmic decay of the solutions (assuming that the initial data are smoother). As corollaries, we obtain several extensions of previous results of stabilisation and control

    Inelastic X-ray scattering from valence electrons near absorption edges of FeTe and TiSe2_2

    Get PDF
    We study resonant inelastic x-ray scattering (RIXS) peaks corresponding to low energy particle-hole excited states of metallic FeTe and semi-metallic TiSe2_2 for photon incident energy tuned near the L3L_{3} absorption edge of Fe and Ti respectively. We show that the cross section amplitudes are well described within a renormalization group theory where the effect of the core electrons is captured by effective dielectric functions expressed in terms of the the atomic scattering parameters f1f_1 of Fe and Ti. This method can be used to extract the dynamical structure factor from experimental RIXS spectra in metallic systems.Comment: 6 pages, 4 figure

    Geometric optics and instability for semi-classical Schrodinger equations

    Full text link
    We prove some instability phenomena for semi-classical (linear or) nonlinear Schrodinger equations. For some perturbations of the data, we show that for very small times, we can neglect the Laplacian, and the mechanism is the same as for the corresponding ordinary differential equation. Our approach allows smaller perturbations of the data, where the instability occurs for times such that the problem cannot be reduced to the study of an o.d.e.Comment: 22 pages. Corollary 1.7 adde

    De la forêt à la chaudière : optimiser la filière bois énergie en Méditerranée

    Get PDF
    Comment augmenter la mobilisation de biomasse forestière à vocation énergétique dans le bassin méditerranéen, de manière durable sur les aspects économiques, environnementaux et sociaux ? Telle a été l’équation aux nombreux paramètres qu’ont cherché à solutionner les dix-huit partenaires du projet Proforbiomed. Aux contextes européen et mondial de transition énergétique et de développement des énergies renouvelables, se superposent des problématiques plus locales : mobilisation durable, pression sur la ressource, de ventilation des produits sur les marchés existants... Pour répondre de la manière la plus exhaustive possible, différentes solutions ont été testées et améliorées : diminution des coûts de production grâce à l’amélioration des techniques d’exploitation existantes, test de nouveaux matériels, amélioration du contact des propriétaires de la ressource, étude de nouvelles implantations de chaudières… Cet article présente un résumé des principaux travaux menés par les partenaires du projet

    The Activation-Relaxation Technique : ART nouveau and kinetic ART

    Get PDF
    The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning kinetic Monte Carlo method

    Damage-free single-mode transmission of deep-UV light in hollow-core PCF

    Full text link
    Transmission of UV light with high beam quality and pointing stability is desirable for many experiments in atomic, molecular and optical physics. In particular, laser cooling and coherent manipulation of trapped ions with transitions in the UV require stable, single-mode light delivery. Transmitting even ~2 mW CW light at 280 nm through silica solid-core fibers has previously been found to cause transmission degradation after just a few hours due to optical damage. We show that photonic crystal fiber of the kagom\'e type can be used for effectively single-mode transmission with acceptable loss and bending sensitivity. No transmission degradation was observed even after >100 hours of operation with 15 mW CW input power. In addition it is shown that implementation of the fiber in a trapped ion experiment significantly increases the coherence times of the internal state transfer due to an increase in beam pointing stability
    corecore